78 research outputs found

    Emulating Molecular Orbitals and Electronic Dynamics with Ultracold Atoms

    Full text link
    In recent years, ultracold atoms in optical lattices have proven their great value as quantum simulators for studying strongly correlated phases and complex phenomena in solid-state systems. Here we reveal their potential as quantum simulators for molecular physics and propose a technique to image the three-dimensional molecular orbitals with high resolution. The outstanding tunability of ultracold atoms in terms of potential and interaction offer fully adjustable model systems for gaining deep insight into the electronic structure of molecules. We study the orbitals of an artificial benzene molecule and discuss the effect of tunable interactions in its conjugated pi electron system with special regard to localization and spin order. The dynamical time scales of ultracold atom simulators are on the order of milliseconds, which allows for the time-resolved monitoring of a broad range of dynamical processes. As an example, we compute the hole dynamics in the conjugated pi system of the artificial benzene molecule.Comment: 8 pages, 4 figure

    Localization and delocalization of ultracold bosonic atoms in finite optical lattices

    Full text link
    We study bosonic atoms in small optical lattices by exact diagonalization and observe a striking similarity to the superfluid to Mott insulator transition in macroscopic systems. The momentum distribution, the formation of an energy gap, and the pair correlation function show only a weak size dependence. For noncommensurate filling we reveal in deep lattices a mixture of localized and delocalized particles, which is sensitive to lattice imperfections. Breaking the lattice symmetry causes a Bose-glass-like behavior. We discuss the nature of excited states and orbital effects by using an exact diagonalization technique that includes higher bands.Comment: 8 pages, 10 figures. Published versio

    Spontaneous pattern formation in an anti-ferromagnetic quantum gas

    Full text link
    Spontaneous pattern formation is a phenomenon ubiquitous in nature, examples ranging from Rayleigh-Benard convection to the emergence of complex organisms from a single cell. In physical systems, pattern formation is generally associated with the spontaneous breaking of translation symmetry and is closely related to other symmetry-breaking phenomena, of which (anti-)ferromagnetism is a prominent example. Indeed, magnetic pattern formation has been studied extensively in both solid-state materials and classical liquids. Here, we report on the spontaneous formation of wave-like magnetic patterns in a spinor Bose-Einstein condensate, extending those studies into the domain of quantum gases. We observe characteristic modes across a broad range of the magnetic field acting as a control parameter. Our measurements link pattern formation in these quantum systems to specific unstable modes obtainable from linear stability analysis. These investigations open new prospects for controlled studies of symmetry breaking and the appearance of structures in the quantum domain

    Evolution from a Bose-Einstein condensate to a Tonks-Girardeau gas: An exact diagonalization study

    Full text link
    We study ground state properties of spinless, quasi one-dimensional bosons which are confined in a harmonic trap and interact via repulsive delta-potentials. We use the exact diagonalization method to analyze the pair correlation function, as well as the density, the momentum distribution, different contributions to the energy and the population of single-particle orbitals in the whole interaction regime. In particular, we are able to trace the fascinating transition from bosonic to fermi-like behavior in characteristic features of the momentum distribution which is accessible to experiments. Our calculations yield quantitative measures for the interaction strength limiting the mean-field regime on one side and the Tonks-Girardeau regime on the other side of an intermediate regime.Comment: 5 pages, 5 figure

    Charge density wave and charge pump of interacting fermions in circularly shaken hexagonal optical lattices

    Get PDF
    We analyze strong correlation effects and topological properties of interacting fermions with a Falicov-Kimball type interaction in circularly shaken hexagonal optical lattices, which can be effectively described by the Haldane-Falicov-Kimball model, using the real-space Floquet dynamical mean-field theory (DMFT). The Haldane model, a paradigmatic model of the Chern insulator, is experimentally relevant, because it has been realized using circularly shaken hexagonal optical lattices. We show that in the presence of staggering a charge density wave emerges, which is affected by interactions and resonant tunneling. We demonstrate that interactions smear out the edge states by introducing a finite life time of quasiparticles. Even though a general method for calculating the topological invariant of a nonequilibrium steady state is lacking, we extract the topological invariant using a Laughlin charge pump set-up. We find and attribute to the dissipations into the bath connected to every lattice site, which is intrinsic to real-space Floquet DMFT methods, that the pumped charge is not an integer even for the non-interacting case at very low reservoir temperatures. Furthermore, using the rate equation based on the Floquet-Born-Markov approximation, we calculate the charge pump from the rate equations for the non-interacting case to identify the role of the spectral properties of the bath. Starting from this approach we propose an experimental protocol for measuring quantized charge pumping.Comment: 13 pages, 12 figures, published versio
    corecore